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IONG~PERIOD EFFECTS IN NEARLY COMMENSURABIE
CASES OF THE RESTRICTED THREE-BODY PROBLEHl

by

Joachim Schubar’t2
/ﬁL Qo /

The long-period effects in nearly commensurable cases of the restric~
ted three-body problem were studied according to the ideas of Poincare’.
The secular and critical terms of the disturbing function were isolated
by a numerical averaging process, by use of an IBM-7TO94 computer. Stabil-
ity is found for all real asteroid orbits corresponding to the cases
treated here. Periods of the variations are given for some forms of
planar motion. Planar and nonplanar periodic solutions are indicated
by the theory. No evidence is found for a disintegration of the Trojan
and Hildas groups of asteroids. Brouwer's explanation of differences
between the Hecuba and Hilda commensurabilities is supported. A%uﬂ&»&

1. Introduction

Minor planets with mean motions that are nearly commensurable with
the mean motion of Jupiter offer a special problem within the general
three-body problem. Some groups of minor planets, such as the Trojan
and the Hilda groups, have mean motions that cluster around a commensurable
value, vhile other commensurabilities seem to be avoided, as in the Hecuba
or Hestia gaps in the distribution of the mean motions. BEven when a gap
exists, some minor planets have mean motions close to the commensur-
able value. The name-giving planets Hecuba and Hestia are examples. The
mean motion of Griqua passed the exact value of the Hecuba commensurability
in the year 1943 (Rebe, 1959). Hagihara (1961) completed a long list of
papers containing the most important work relating to commensurability
cases. Two recent publications of Rabe (1961, 1962) on periodic Trojan
orbits of long period and an article by Brouwer (1963) with a theoretical
explanation of the gaps should be added to the list.

1Thls work was supported in part by grant number NsG 87/60 from the
National Aeronautics and Space Administration.

2Astronomisches Rechen Institut, Heidelberg, Germany; visiting
consultant, Smithsonian Astrophysical Observatory.




The restricted three-body problem was taken as the basis of the work
done here. Therefore the mass of the minor planet is neglected and
Jupiter is assumed to move around the sun on a circular orbit. The
gravitational constant, the mass of the sun, and the distance between
the sun and Jupiter were taken equal to unity. The mass of Jupiter is
treated as a small quantity. For the numerical computations the value
l/th7.355 was ordinarily used, but the theory is developed with an
optional value m for the mass of the disturbing body. It could also be
used for two satellites of a planet if one of these is much smaller
than the other.

It is assumed that the ratio of the mean motion of the minor planet
to that of Jupiter is close to the value (p + q)/p, where p and q are
relative prime integers {(p > O). Small values of p and q give us the
most important commensurabilities. Thus the ratios l/l and 3/2 belong to the
Trojan and Hilda groups, and 2/1 and 5/1 to the Hecuba and Hestia gaps.
For these and similar commensurabilities, the usual secular perturbation
method does not hold,because one of the angular arguments in the series
development of the disturbing function becomes critical. This means that
the terms with this argument and its multiples give rise to long-period
effects of predominant influence, which must be considered in a long-range
perturbation theory. So far, no general secular theory is known that
treats all or several commensurabilities at once. But methods for a single
commensurability case are available. Important work in this field was done
at the beginning of this century. Hill (1900) applied Delaunay's method
to minor planet orbits of the Hecuba type. The secular terms and the terms
with the critical argument are selected in the series development of the
disturbing function. Poincare (1902a) suggested a special system of can-
onical variables and a simple method for commensurability cases, which
Andoyer (1903) applied to the Hecuba case. Curves were published which
show the essential features of all possible forms of motion in a plane.

When Schwarzschild (1903) worked on the periodic orbits of the
Hecuba case and their stability, he used the method of averaging to
isolate the influence of the critical argument. The value of the con-
sidered function is computed for equidistant points in the periodicity
interval of a short-period argument, while the critical and other long-
period arguments remain at a constant value. The mean value then gives
the isolated influence of the long-period arguments. No series develop~
ment is necessary. A tabulation of the function for different values of
the long-period variables is possible. This method is analogous to the
Gaussian method of computing the secular perturbations in the general case
of planetary motion (Hill, 1882), which now can be used to get the long-
range effects in the motion of celestial bodies by electronic computers,
if no commensurability exists (Musen, 1963). Moiseev (1945) has published

a compilation of the Gaussian, the method described here,and other averag-
ing methods.




In the present paper Poincare's variables and method are used, but
the averaging process was introduced to get the interesting part of the
disturbing function for a selection of commensurability cases. With the
aid of an IBM-TO94 computer the averaged disturbing function could easily
be tabulated for a large set of values of the remaining variables. No
restriction in the eccentricity (e) is required. Even the case e = 1 can
be treated, since the transformation to the regularizing eccentric anomaly
is made in the formulas. Andoyer's curves were repeated and corrected for
the larger e values. The corresponding curves were found for other
commensurabilities. Nonplanar periodic solutions are indicated by the
computations. The periods for the long-range variations in the Hecuba
and Hilda cases were obtained for a number of orbits. Comparison with
direct numerical integration proves this approximate~-commensurability
theory. It fails only in cases of close approach to Jupiter, or if the
remainder part of the disturbing function must be supposed to be very
important. For the Hilda group of asteroids no disintegration of the
objects occurs, but a quite regular oscillation of long period will take
place in the mean motions over the millennia.

2. Formulas

The canonical system of variables published by Poincare (l902a) is
adapted to the commensurability ratio (p + l)/p, but can easily be general-
ized to the ratio (p + q)/b if Poincaré's integer n is changed to the
rational number p/q. q may not be zero, but the Trojan case also can be
treated with these equations, as is shown later. The generalized system
is given by the equations

dt = ™ at -~ 30’ at = 3’
a» _ _3F do _ _F ar _ _3F
dt U at - " &’ a - T8

F=n, [U - (s +T)p + q)/q] + %[U - (s + T)p/q]~2-+ m [A"l - C] .




Here the unit of the time t is fixed by the choice already made for
the other units; m is the mass of the disturbing body, and the equation

n, = A1 4+ m represents its mean motion; A-l is the reciprocal distance of

the minor planet from Jupiter, and { is the indirect term of the disturb-
ing function and is given by the scalar product of the vectors from the
sun to the two other bodies. - If the osculating elements of the minor
planet orbit referred to the sun and to the orbital plane of Jupiter
are given, Poincaré's variables are obtained from the expressions

U=[(p+q)\/;-p acoscpcosi]/Q:
s =a (1 - cos 9) ,

T =+a cos ¢ (1 - cos 1) ,
A= -4,
o=M-(£-2)+a)a,
T=4-0-0(-2)0p+d/a,

where a is the semi-major axis; e is the eccentricity; ¢ is the eccentri-
city angle, e = sin @; i is the inclination; 2 is the longitude of the
ascending node; M is the mean anomaly; £ is the mean longitude; and ,Zl is

the mean longitude of Jupiter. For i = O one has T = O, while T becomes

unnecessary. S vanishes with e. For small values of S and T, Poincare
introduces the variables

x=’\/é—Scosc, y='\/'2—8sinc,
or
§=«/§Ecos¢, T\=«/2—'I'sin'r.

The pair x,y can replace S,c and €,7 can replace T,T in the canonical
system of differential equations. The function F is regular in the
variables x,y, §,T if they are small.




T also vanishes with cos ¢ . This is irrelevant in the case of
planar motion, as 1,T are unnecessary. In the general case, however,
the inclination and the mean longitude become indeterminate. Variables
describing the direction of the line of apsides are useful,then, together
with the mean anomaly and other quantities, which are proportional to
cos @ and give the orientation of the orbital plane. Several systems
of canonical variables were found, which are adapted to commensurability
cases (see Appendix 1).

During the averaging process fixed values are prescribed for U, S,
T, 0, T, and M and A are varied in such a way that o and T stay at this
value. If vy =p + q and T;‘O , the interval O = M < 271y covers the
period of F as a function of M. The mean value required is then given
by the expression

any
Foxz— | FaM=x-= FWAE, wh 1s th i 1
= oy _QTTY 5 Where E is e eccentric anomaly
0 0

and W = dM/dE=1-e cos E, as E- e sin E= M, OnlyA_landgvarywith

E, so that it is sufficient to compute the mean values of W A-l and W (

with respect to E to get the mean value of F. A sufficiently fine division
of at least 100 equidistant points covering the integration interval was
used during the numerical computations to get the mean of the correspond-
ing F values. With 100 points, the IBM-TO9L electronic computer was able
to deliver 350 values of the averaged function F in one minute.

The function F was computed as a function of the variables U, o, T,
p =N |2S|, and i. The formulas used are the following:




S=t%_p2;53ndy=p+qmyhavethe

same sign,
Wa cos ¢ = (qU - v8)/(r - p cos 1) ,
v-(s+T) o/a=ra

S+‘\/acoscp=L,

U-(S+T)(p+q)/q='\/;coscpcosi,
e=pvlL-3zsl /1],

W=T=-0,

M=E-~esinE, O<sE<27mT,
A=L2(cosE-e), B=L~Nacos ¢ sin E ,

X =Acos W=Bsinw, Y=Asin w+ Bcos w,
=4, -0=T+M-0)p/r,

{ =X cosa + ¥Ycos 1sina, 1
A-l =|_(X - cos a)2+ (Y cos i = sin a)2+ stingi] 2,
W=1-ecos E .

If F is replaced by F in the differential equations, then U becomes
a constant. The same holds for the function F . A constant

c =1.5 (v nl/p)e/j- nqu/p was always subtracted from F to obtain small
values of this function in the interesting cases.

For the planar case i = O some of the formulas become very simple.
The value w = O was then used.




3. The long-period effects

A. The planar case

In the planar case F is a function of p and ¢ only, if the constant
U has a fixed value. Curves F = const. can be drawn in a p,oc plane.
For most commensurabilities, +the expressions x =p cos gand y =p sin ¢
were introduced to draw the curves F(x,y) = const. in an x,y coordinate
system. This is the method used by Poincaré (1902a) and Andoyer (1903).
Poincare pointed out that when m = O the curves become circles around
the origin. An extreme value or saddle point of F(x,y) corresponds to a
periodic solution, because no long-period effects occur. There is always
an extreme at the origin, if m = O, wvhile a second extreme is present on
one of the circles for part of the U values. The last-mentioned corres-
ponds to a commensurable mean motion. If the mass of the disturbing
body is taken as m, a slight deformation of the surface F(x,y) will take
place. One extreme will stay at or near the origin. If an extreme
circle was present for m = O, normally at least one extreme and one
saddle point will stay near to it. The curves drawn by Poincaré represent
a standard case for all commensurabilities in which q = 1 . Thus a long-
period oscillation is found for the semi-major axis and the eccentricity
of the minor nlanet, both quantities being connected by the condition
U = const. In many cases a libration is performed by o.

Some simple qualities of F(x,y) will now be listed. As Poincare
pointed out, F will not change if y is replaced by -y. Therefore the
plane y = O is a symmetry-plane for the surface F(x,y). A series develop-
ment of F(p,0),which contains only cosine terms with multiples of qo = gM
~(4 - zl) as argument, is possible. Hence the expressions

o= nn/q; n=0,12, ... ; give a symetry-plane for f(x,y). This
indicates that when q > 1, one has %5 = %5 =0atx =y =0, If more
extremes or saddle points are present in the vicinity of the origin,

they are fixed to the o directions just mentioned. It can be shown with
the aid of Newcomb operators that only a saddle point can appear at

o = 1807, if the corresponding p is small and g = 2,3,4,5; p > 0 is option-
al. The series_development of F(p,0) is helpful in such a case for araw-
ing the curves F(x,y) = const. The only curves found are those corresponding
to the stable types among the figures published by Moser (1958) in a paper
on the stability of the asteroids. If g =1 or q = 3, for a special value
of U a curve with a cusp 1s present. In the case g = 1 the cusp appears

at the direction o = 1800, and if U is increased then, an extreme that is
moving toward the origin and a saddle point moving outward begin to exist
on the surface F(x,y), starting from the location of the cusp.



For the Hecuba commensurability (p =q =1) Andoyer (1903) drew the
curves F = const. in 6 cases,characterized by different values of U.
The last two of his figures should not be used, because his series
approximation was insufficient in those cases. His extremes with y # 0
corresponding to asymmetric periodic solutions disappear as soon as the
accurate averaged function F is used. Even for large eccentricities, no
asymmetric veriodic orbits could be found in the Hecuba case or in any
other corresponding to a mean motion larger than n, -

Cases with a mean motion smaller than n, can be studied with q <O,

v > 0, while v < 0 allows the treatment of retrograde commensurable mean
motlons. Retrograde cases also can be treated with ¥ > 0 if the
eccentricity angle has a value in the interval 90° < ¢ < 180°, because a
negative cos ¢ reverses the sense of the motion. This follows from the
formulas for A and B. The common treatment of direct and of retrograde
motion for a fixed commensurability ratio is nossible with U and p values
corresponding to the whole interval O < ¢ < 180°. The continuation of a
class of periodic orbits, given by extremes for different U values, over
a binary collision orbit (@ = 90°)can be studied in this way.

If vy <0 and cos ¢ < 0, direct commensurable mean motions can be
studied agapin. This allows one to handle the Trojan case with p = 1, q = =2.
With v = =1 one has S < O and therefore values of 4fa in the vicinity of
=1 . Trojan orbits with a very small eccentricity cannot be included here,
because ¢ = 180° must be excluded from this theory. But for this case
the veriodic orbits of Rebe (1961, 1962) are available to give the long-
period effects.

The following commensurability cases were studied with the averaged
function F:

-8~




(p+a)/p P q Figure numbers Type
2/1 1 1 1-6 Hecuba
3/2 2 1 7 - 10 Hilda
L/3 3 1 11 Thule
3/1 1 2 12 - 16 Hestia
5/2 2 3 17
/3 3 4 B}

8/3 3 5 -
9/k 4 5 -
11/5 5 6 -
-1/1 1 -2 22 - 24 Trojans
1/2 2 -1 18
1/3 3 -2 19
2/3 3 -1 20
3 /4 4 -1 21 Hyperion

The mass of Jupiter was used for all cases except the last one,

where m = ,00025 was taken as the mass ratio of the satellite Titan to
its central body Saturn. This case is characteristic of the perturba-
tions caused by Titan in the motion of the satellite Eyperion; compare
the publication of Woltjer (1928).

For the more important cases & number of figures corresponding to

different U values is given in Appendix 2. For q values larger than 3,
almost all the curves F(x,y) = const. are nearly circular. Thus the
oscillation of the elements a and e will be small and a libration of the
angle ¢ is very improbable. All the figures published here were drawn
with the aid of a data-plotting machine. Linear interpolation was made
by a IBM-TO94 program to get the points in the p,c plane corresponding to
a set of fixed values of F, when the tabulation of F(p,0) was given.
p and o were then taken as polar coordimates for the plotting. Therefore
the canonical variables x and y are the rectangular coordinates. Only the
curves for the Trojan case were drawn with p and ¢ as rectangular coordin-
ates.




B. Noanplanar cases

If three-dimensional motion is treated, ¥ is a function of g, T, P,
and i, while U is a constant. The problem is too complicated for a general
discussion here, but some qualitative remarks are possible. If m = O, the
function F depends only on S + T. For appropriate values of U it has a
minimum gt a special value of S + T, which corresponds to a commensurable
mean motion. If m # O, the combination S + T =4a (1 - cos ¢ cos i) will
be restricted, because F will be constant and depends mainly on S + T.
Since the constant U gives a second condition for Jg and cos ¢ cos i,
these quantities will be restricted to finite intervals. As in the planar
case, it doec not imply instapility, according to this theory, if the exist-
ing minor-planet orbits are considered.

Nonplsnar periodic orbits are indicated, if the four independent
variables can be chosen in such a way that the partial derivatives of F
become equal to zero. Some simple qualities of F are very useful for this.
F does not change if o and T change sign at the same moment. If T is aug-
mented by m or ¢ by 2m, F remains unchanged. If q is an even number, o
also can be augmented by m wibthout a change in F. This can be proved with
the aid of the series development of the disturbing function. If F is now
treated as a power series in x,y, E£,7, only special combinations of the
vVarilables have nonzero coefficients. If q is even, it can be shown that
X =y = 0 is a particular solution of the differential equations. The
long-range effects in € and T can be studied then by drawing the curves
F(g,M) = const. Periodic solutions will appear on the £ and T axes; one
always is present at the origin, where i = O. This was found when the
case p = 1, q = 2 with U = 0.696 was treated as an example, while no
periodic solutions could be detected for p =q =1, U = 0.8 except the
planar ones. But in the case p =2, q = 3, U = 0.7k, nonplanar periodic
solutions exist with y = O and an x value close to zero.

C. The effects as a function of time

So far, only effects have been mentioned that could be evaluated
with the aid of the integral F = const. of the equastions of motion.
To obtain the dependence on time, numerical integration of the differential
equations is necessary. The partial derivatives of F are needed for this.
They also can be obtained by the averaging process described for F. but &
series development was used here for the computation of the derivatives of ¥ in
the plamar case, if the values of P were sufficiently small. An TBM-7094 program
was prepared to do the integration of x, y, and £ as functions of time,
if the series development is known. Laplace coefficients (Izsak and Benima,
1963) and special Newcomb operators for canonical elements, prepared by
Izsak and others, are available to get the development of F. Another
IBM-T7094 program doing the accurate numerical integration of any minor-
planet case of the three-body problem in rectangular coordinates was
used to check the theory described here and to indicate its limitations.

It gave the most relisble way to get the time dependence of the long-period
effects in special cages.

-10-




If a saddle point is present for the surface f‘, the corresponding
periodiec solution will be unstable. Asymptotic orbits will start from
such a solution. The time required to approach or to depart from the
unstable periodic solution is infinite. An extreme of the function F
gives a stable periodic solution. The forms of motion in the vicinity of
it can be obtained with a variation theory. The necessary second-order
derivatives of F were computed by numerical differentiation. The Hecuba
and Hilda commensurabilities were treated in this way to get the periods
of the long-range effects in the planar case. Orbits that differ more wide-
ly from a periodic solution will have periods of the same order of magnitude,
unless they are close to an asymptotic orbit. A list of stable periodic
solutions with periods of the variational orbits is given here.

HECUBA p=1 q=1 =0

U p Ja e cos ¢  Period (Jupiter = 1)

<793 .058 <791 . 065 1.00 37

.80 .121 . 793 .136 «99 39

.82 .231 -793 - 257 97 37

87 . 391 STk A3 .90 36

.96 STT <T9k .61 -T9 3
1.1 .783 <794 .79 .61 30
1.3 1.006 T4 .93 .36 2k
1.5 1.188 Tk .99 11 20
1.7 1.346 <9k .99 -.14 17
1.9 1.487 T4 .92 -.39 17
2.1 1.616 T4 .76 -.6k4 21
2.3 1.736 -793 ik --90 5T



HILDA p =2 qa=1 o =0

U 0 Ja e cos ¢ Period (Jupiter = 1)
.882 .098 872 .105 .99 23
.887 .120 .873 .128 .99 23
.90 .164 .873 .175 .98 23
.92 .216 873 .230 .97 22
«95 27T 873 .293 .96 22

1.0 . 356 874 <374 .93 21

1.1 476 .87k kg2 .87 19

1.2 .5TL BT7h .582 .81 16

1.4 725 .87k .T15 .70 10

1.6 .852 87k .811 .58 6

The mass of Jupiter was used here and the periods given are multiples
of the orbital period of Jupiter. In this unit the synodic periods of
Hecuba and Hilda are close to 1 and 2. The periodic solutions found here
approximately as minima of F (p,c) really exist, as could be shown by
accurate numerical integration for some of the cases. Schwarzschild (1898)
treated these periodic solutions, and Poincaré (1902b) mentioned their
connection with the set of noncommensurable nearly circular periodic
orbits. This set is interrupted at commensurabilities with q = 1, as
Poincare pointed out. His predictions can be proved with the theory given
here. The list given here indicates that in the Hecuba case, a connection
exists between very eccentric and retrograde periodic orbits.

The periods of the long-range effects of some accurately computed
minor-planet orbits proved to be about equal to or slightly smaller than
the corresponding value in the lists. For the case p =q =1, U = 0.8 (see
figure 5), the variables x and y were obtained as functions of time, as

described. By taking start-values from the relations x = Xgr ¥ = 0, six

curves were obtained which surround the point corresponding to the periodic
solution and are enclosed by the curve corresponding to an asymptotic orbit.
The periods are given here in the same unit as before:




x Period (Jupiter = 1)

0

+0.01 49.9
+0.03 41.8
+0.05 39.0
+0.07 38.2
+0.09 38.5
+0.11 39.0

To give a rough estimate, the period of the long-range effects is
equal to about 4O periods of Jupiter for Hecuba-type orbits and to about
20 for Hilda-like cases. For the Trojan planets the corresponding value
is known to be 13 (see Rabe, 1962). This corresponds to about 500, 250,
and 150 years in the three cases respectively.

1. A .V LS o ~
4. Application to real cases

A. The gaps

A statistical explanation for the gaps in the distribution of the
mean motions of the asteroids was given by Brouwer (1963). His conclusions
are based on a theory that is adapted to the single commensurability cases,
as was done here. This theory indicates a gap for all commensurability
cases. While large gaps are present for the commensurability ratios
2/1 and 5/1, and less important ones for ratios between these with larger
g values, an accumulation of minor planets is found for the matio 3/2.

This is the very well-defined Hilda group. To explain the difference
between this case and the others with gaps, Brouwer pointed out that there
are many more less-important commensurabilities crowded around the 5/2
case than around the 2/1 case, if equal intervals in the mean motion

are considered and commensurabilities with g up to 9 are marked in them.
This is not an explanation if the oscillation in the mean motion caused
by the commensurability is smaller in the 3/2 case than in the 2/1 case.
But otherwise the theory can fail for the Hilda case, as the nearby
commensurabilities can temporarily become important and must be included
in any theory of the long-range effects.

The oscillations in the mean motions for the Hecuba and Hilda case
can be found from drawings such as those in figures 1-10, if the formula

‘\/; =U - .5 p2 p/q is used. Maximum values of the oscillation found for
some U values are listed here. The difference An of the extremes of the

mean motion is given in seconds of arc per day, together with the corres-
ponding extremes of p. The mean motion of Jupiter is about 299" in the

s|sme unit.
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U Py Py An
795 .02 .13 19"
.80 .00 .18 36"
.809 .10 .23 51"
.82 .16 .28 61"
87 .33 N 93"
HILDA p=2 a=1

U Py P An
.88 .01 .13 27"
.885 .02 .16 39"
.895 0T .20 52"
.91 .12 .ok | 66"
.93 17 .29 83"

The oscillation is found to increase with the mean eccentricity,
characterized by the mean of the two values of p given. As the Hilda case
offers the larger oscillations, Brouwer's explanation is supported. It
might be added that Hilda-type planets are more sensitive to additional
effects, as moderate eccentricities can cause close approaches to Jupiter.

Figures 1-6 in Appendix 2 give an impression of the oscillation in p
for the Hecuba case. Figures 3 and 4 correspond to figures 9 and 12
respectively in the paper by Andoyer (1903), but in the work reported in
the present paper no asymmetric periodic solutions were found for this case.
The periodic solutions with o = O have been listed previously. The unstable
periodic solutions with o = 180° are cannected with nearly circular ones, as is
shown in figures 2, 3, and L. In the introduction an example was given
for a minor planet, whose mean motion passes through the Hecuba gap. An
interesting question is: how many of the numbered asteroids will do so
during a 500-year ®Besriod?

=14~




Figures 12-16 are given for planets close to the Hestia gap. A periodic
orbit always is given at the origin. It is circular in this approximation.
While eccentric periodic orbits begin to develop from it, it is found to
be unstable for a short interval in U (see also v. Zeipel, 1915). Figure 17
is related to the 5/? commensurability ratio, which corresponds to the
largest gap between the before-mentioned Hecuba and Hestla gaps. According
to the symmetries of this case, only two types of periodic solutions begin
to develop from the one that is almost circular. This holds for every
q > 1 examined here.

B. The groups

The curves shown in figures 7-10 for the Hilda case are analogous to
those for the Hecuba commensurability. Por the asteroids of the Hilda group
the theory developed here will hold only if the oscillations in the semi-
major axes remain small. This will be true for cases with a libration in
0 around zero with small amplitude. It is interesting to look at the
planets with large eccentricities, where o is well defined. The list
glven here was computed with the aid of tables of Jjust these objects
published by Tshebotarev and Boshkova’(1953). Two objects were added, one
of which is Comet Oterma (Marsden, 1961), that temporarily belonged to the
Hilda group. The elements of the comet for 1950 were used. The mean motions
are listed in seconds of arc per day.

Object o o) 1 Mean motion
153 HILDA -38° 9° g° 450"
190  ISMENE L 10 6 k53
361  BONONIA Lo 12 13 457
499  VENUSIA -3k 13 2 452
4«8  SIMEISA 65 10 2 453
958  ASPLINDA 11 11 6 455

1038  TUCKIA 26 1k 9 456

1162 LARISSA 22 6 2 450

1180  RITA -58 10 T kkg
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Ob ject o ® i Mean motion

1202  MARINA -5° 12° 3° L5g™
1212  FRANCETTE 35 10 8 448
1268  LIBYA 32 6 L k55
1345  POTOMAC -7 10 11 450
1439  VOGTIA -29 T b 51
1512 1939 FE 14 10 7 451
1529 1938 BC -53 11 9 Lhl
1578  KIRKWOOD 72 13 1 451
-~ OTERMA -172 8 L 448

The list shows ¢ values surrounding 0° for all objects except the
comet. As it is improbable that this is due to the epoch for so many
cases, one can expect libration for all asteroids of the Hilda group, and
the stability of the group is indicated by the theory. Small values of
|c| prevent close approaches to Jupiter, while values around 180~ allow
them. This difference between the Hilda-asteroids and Comet Oterma was
pointed out by Marsden (1962). Indeed, a close approach of the comet to
Jupiter in 1963 completely changed the orbit, so that the theory given
here is disproved for that case. It seems to be important to prove it for
at least one of the asteroid orbits, as Tshebotarev (1953) calculated that
a complete disintegration of the Hilda group would occur within the next
1000 years. He used a periodic orbit and variational equations. In the
present paper, accurate numerical integration on the IBM~-TO094% computer
was used to find the variations of the semi-major axes of two test orbits
that are similar to the orbit of the planet Hilda. 23000 integration steps were
done in both cases to cover a 1000-year interval. In the first case the
eccentricity of Jupiter and the inclination were neglected, while in the
second case these elements were taken into account. After the short-
period effects are smoothed out, a quite regular, sinusoidal oscillation
remains in the semi-major axes taken as function of the time. TIn the
first case a oscillates between 0.756 and 0.767, while in the second the
amplitude is only one-half as large. The periods of the oscillations con=-
firm the values given by the theory. This means that Tshebotarev's method
cannot be applied to such a long time interval. Stebility is indicated for
the whole Hilda group of asteroids. A numerical integration to show the
libration of -¢ for Hilda already has been done by Hirayama and Akiyama (1937).
Akiyaﬁa (1962) publisned a continuation of that integration. As he takes a
noncircular orbit for Jupiter, the libration of o is influenced by additional
effects.
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The minor planet Thule is the only object known as an example of
the 4/3 commensurability. As its eccentricity is very small, the theory
indicates a small oscillgtion in the semi-major axis and thus stability;
compare figure 1l. The same will hold for the Hilda-group members with
small eccentricity. No other minor planets have mean motions in this
range except the ones belonging to a group.

Groups belonging to the 1/1 commensurability are represented by the
Trojan planets and Jupiter's satellites. The latter will not be treated
here. The last three figures given in Appendix 2 are related to the
Trojan case. Figures 22, 23, and 24 are given for ¢ = 1700, 160°, and

150o respectively, as U=-c052 g'with p=1qgq=-2, and L= -1. Thus

the last figure corresponds to an eccentricity varying around 0.5 and a
semi-major axis close to 1,while cos ¢, .fa, and the mean motion are
negative. 2 ¢ is equivalent to the mean angular difference between
Jupiter and the Trojan as geen from the sun. Therefore a periodic orbit
can be expected for o ~ 30 ; compare the paper by Willard (1913). In
the figures, o was used as abscigsa, g as ordigate. A 90" interval is
given in o, starting with o = 137, 237, and 33  respectively, in figures
22, 23, and 24. As can be seen from the figures, the expected periodic
solutions are stable. The corresponding o-values become larger with
increaging eccentricity. An unstable periodic solution ig present for
g =90 . The curves are symmetric with respect to o = 90".

Libration is possible around the stable periodic solutions, in ana-
logy to the well-known forms of motion with small eccentricity. Orbits
with o passing the value 90O are indicated in figures 22 and 23, They
close symmetrically around a second stable periodic solution in anslogy
to the horseshoe-shaped orbits described by Rabe (1961). Asymptotic
forms of motion start or end at the unstable periodic solution, but it
is by no means proved that an orbit starting there also will end there
asymptotically, as this theory is only an approximation. Some Trojan
orbits can even change from a libration of large amplitude around one
of the stable periodic solutions to the other form of motion with o
Passing 900. Thiiring (1959) found this for disturbing masses larger than
Jupiter, using accurate numerical integration. Rgbe and Schubart confirmed
this for the mass value of Jupiter by an unpublished example integrated
with the computer of the University in Heidelberg, Germany. Such a change
from libration to nonlibration, effected by crossing the curve that cor-
responds to an asymptotic solution, may also be possible for other com-
mensurability cases.
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C. The outer commensurability cases

There is only one minor planet, Hidalgo, with a semi-major axis
considerably larger than 1 . But it is not dominated by a single commen~
surability ratio and has a very eccentric orbit. An example of a
commensurability with the disturbing mass on the inner orbit and the
disturbed mass on the outer is given by two Saturn satellites, as mentioned
before. Figure 21 was drawn by use of the commensurability ratio B/h and
the mass m = l/hOOO corresponding to that case. Figures 18, 19, and 20 refer
to a small object outside the orbit of Jupiter and represent the three
most important outer-commensurability ratios.

Figures 20 and 21 both show the possibility of a libration of o about
1800, which is indeed realized in the case of the Saturn satellites. Then
the oscillations in the mean motion remain small, and close approaches to
the disturbing body are avoided, as was found for the Hilda group.

Figures 18 and 19 contain asymmetric periodic orbits. For the commen-
surability ratio l/é, such orbits have already been found and proved by
Message (1958, 1959). For the ratio 1/3 no direct proof by numerical integra-
tion for an asymmetric solution has yet been done. As the Trojan case with
the ratio l/l in the stable periodic solutions also contains asymmetric
periodic orbits, it is indicated that ratios with the numerator 1 favor
the occurrence of this type of solution. Cases with p + q = ¢ 1 differ
from all others by the fact that only then the mean value of ( used for
the computation of F is different from zero. Thus the influence of (
seems to produce the asymmetric periodic orbits.
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Appendix 1: Canonical Variables

The following equations given without & proof suggest new systems of
canonical variables. These are useful, if cos ¢ is small or equal zero.
A transformation to separate short-period and critical arguments also
can be done here.

Ja dM + /a cos ¢ dw + /a cos ¢ cos 1 4 L

= JadM+ /acos ¢cos g 4B + /& cos ¢ cos 1 dy
= JadM+ /acos gPQ d (p,/P,) + /& cos ¢ P,Q, d(Py/Pz)
= a dM + /a cos +
V2 v ¢ (@ + R)a[P/(1+P)]
+/a cos @ (Qy -R) d [Py/(l +p)] .
Ja dM + /a cos o dw + /a cos ¢ cos 1 a - zl)
= JadM+ /a cos pcos g dB + Ja cos ¢ cos 1 a(y - zl)

= Uda(ed/y) + /a cos @ cos a,dp + /a cos g cos 1 dfy - L, + M/l .

W =T - g is the distance of the perihelion from the ascending node.
P = (Px, Py, PZ) = (cos B cos § , cos B sin ¢ , sin B) is the unit vector
of the direction to the perihelion if Jupiter moves in the X,y plane.
Q and R also are unit vectors with (FQ) =0, R= [P x 3] and @ giving
the direction to the object, if the true anomaly is 900. al is defined
by cos @, =sin 1 cos (v -n) .
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(Explanations of the figures are found in the text, in the chart on page 9.)




¥ oandig

,02¢6080=N ‘|=b *|=d
v20-

ERITR
—_ .
-e o .

‘. .

¢ sandiyg

g80=n ‘I=b‘|=d




g aJandig

180=N"‘|=b
8v0-

80~

g eand1g

280=N ‘|=b ‘|=d

2e0-




e T tee w . - oeee *

e’

4

p=2,q=l, U=0.882

p=2,q=l, U=088

Figure 8

Figure 7




0T eand1g 6 eand1q

188°0=N *|=b ‘Z=d
b20-

-
b}
AN .o gt LI Y
., M « o ... : . .
-- . .o .. .-. o 0t ™o s my gt oo. .
o 0 IS e, Pt
. -o- T . * S8 0.-. ..- [
Iy -2y~ TR R B \ R B L I .
— 8¢0 X 1 | Baare Y /. 1 1 v20-
5, e LY, . R S
M ‘ .. Naseosee” - L
R ) i
Y e .
e o o s LS




2T eand1g 1T oan31g

G20€690=Nn ‘2=b"*|=d 6060=N ‘I=b‘¢c=d
'O - v10-
\,\\,\\,\\_\I_\IIJIJIJIJI \\\,\\,\ \1\.\I1I T T
\\ . . o




o st oo
st

-
PRI

-0.12
p=l,q=2, U=0.693532

p=1,q=2, U=0.6933

Figure 14

Figure 13



9T eJandtg

969°0=N ‘2=b‘|=d

GT 8andtg

¥69°0=Nn '2=b‘|=d
v1'0-




8T euangtg

2gel=n"‘1=b'2=d
820-

LT aamBty

8¢.0=N ‘¢=b‘2=d
21'0-




02 eandtg

90I'l=N ‘|-=b ‘¢=d
82°0-

T T T

"

6T 2andTd

8lt'1=n‘2g-=b'g=d
82°0-

. -
3 L
..._ T,
.- -o-




x_,\__,_____L_),,\r"’
-0.16

p=4, q=-1, U=1.0806424

m=.00025

Figure 21




22 oan31g

006

9,00'0-=N ‘g-=b=d o

96|

L Y
LA Y
.
.
.
]
.
-
« = °
o

PO T S R Y }
.« * - LI
. . * RN s
.
o * o * *e e
. .« s e s .
. " «® . *°° T, oo [}
. . . .
. - . ., . .
. . .
- . [ s+ ° b A . [
. . . . . .
. . . .
. - . o® ) « o e
. * . * . .
. . o-o ” . v A Y ¥ . . o v
. . [ oon RO . S et
[ * °® L . . . * e
. . d « v »
. . e . ®e . o+ e g
. ] . * .
. . o - -~ T e see
o . »* . . ¢« e vee
. . .
. . 4 . . « o v ee
N . . .
. . F) . - . . g ¢ v
. 0 . .
. L4 . . ¢ o oo
o .
. K . . $ ¢ s
. . . . Y . . ees
. . . % . * s eeen
. . . . « e s
.
. . . . ¢ s esse
. . . s o s eve
. . . . ° * s e e
. . . .
. ., Y . - * . * s sae
.
- . o % Cey L, - s s eve
. .
. . . . . . . e
. . . .
N . . * . ¢ s s
. * * .
. -~ . . . . e
.
. .
ooo ., -~ - . L, . P -o g v
. . “ . K s o 0
. * . M .
-, . .. ., . ., . o « 0 s
Q)
. . * . ano Cae o e 0 R
. - - . . .
. . .
. - . . e
., .. ~ . L ¢ .« o
LY LY . rl .
. . * . .
* - . . O
. . LI
. ., . ¢
. . .
., A T } . .
.
e, [ 14




g2 ean3rg

006

Vol

AL '
LI R
. ]
. .
. .
. .
o ]e
(14 e
. .
. .
. .

00'¢




$2 eandtg

o0

1G]




